Efficient Probabilistic Parameter Synthesis for Adaptive Systems
نویسندگان
چکیده
Probabilistic modelling has proved useful to analyseperformance, reliability and energy usage of distributed ornetworked systems. We consider parametric probabilistic models,in which probabilities are specified as expressions over a setof parameters, rather than concrete values. We address theparameter synthesis problem for parametric Markov decisionprocesses and parametric Markov reward models, which asks fora valuation for the parameters such that the resulting (concrete)probabilistic model satisfies a given property. To solve parametricprobabilistic models for quantitative reachability properties, wepropose efficient, robust methods, either based on sampling, forwhich we provide two algorithms, Markov chain Monte Carloand the cross entropy algorithm, or on swarm intelligence, forwhich we adapt the particle swarm algorithm, a nonlinear opti-misation method from evolutionary computation. We implementthe methods in PRISM and demonstrate the effectiveness of ourapproach on several case studies, including adaptive systems andonline model repair.
منابع مشابه
A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin
Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...
متن کاملAdaptive Approximation-Based Control for Uncertain Nonlinear Systems With Unknown Dead-Zone Using Minimal Learning Parameter Algorithm
This paper proposes an adaptive approximation-based controller for uncertain strict-feedback nonlinear systems with unknown dead-zone nonlinearity. Dead-zone constraint is represented as a combination of a linear system with a disturbance-like term. This work invokes neural networks (NNs) as a linear-in-parameter approximator to model uncertain nonlinear functions that appear in virtual and act...
متن کاملThesis Proposal Parallel Learning and Inference in Probabilistic Graphical Models
Probabilistic graphical models are one of the most influential and widely used techniques in machine learning. Powered by exponential gains in processor technology, graphical models have been successfully applied to a wide range of increasingly large and complex real-world problems. However, recent developments in computer architecture, large-scale computing, and data-storage have shifted the f...
متن کاملNew adaptive interpolation schemes for efficient meshbased motion estimation
Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...
متن کاملParameter Synthesis for Parametric Interval Markov Chains
Interval Markov Chains (IMCs) are the base of a classic probabilistic specification theory introduced by Larsen and Jonsson in 1991. They are also a popular abstraction for probabilistic systems. In this paper we study parameter synthesis for a parametric extension of Interval Markov Chains in which the endpoints of intervals may be replaced with parameters. In particular, we propose constructi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013